Researchers discover quantum switch for regulating photosynthesis

This article has been reviewed according to Science X’s editorial process
and policies.
Editors have highlighted the following attributes while ensuring the content’s credibility:

fact-checked

peer-reviewed publication

trusted source

proofread


Cryo-EM structures for LHCII in nanodisc and in detergent solution at pH 7.8 and 5.4. Credit: Institute of Physics

× close


Cryo-EM structures for LHCII in nanodisc and in detergent solution at pH 7.8 and 5.4. Credit: Institute of Physics

Photosynthesis is a crucial process that allows plants to convert carbon dioxide into organic compounds using solar energy. Light-harvesting complex II (LHCII) is a complex of pigment molecules bound to proteins. It switches between two main functions—dissipating harmful excess light energy as heat under high light intensity through nonphotochemical quenching, and transferring absorbed light to the reaction center with almost a unit efficiency under low light.

Bioengineering studies have shown that accelerating the transition between these two functions can increase photosynthetic efficiency—for example, soybean yields have been reported to increase by up to 33%. However, the atomic-level dynamic structural changes in LHCII that activate such allosteric regulation had not been previously elucidated.

ln this study, researchers led by Prof. Weng Yuxiang from the Institute of Physics of the Chinese Academy of Sciences, together with Prof. Gao Jiali’s group from Shenzhen Bay Laboratory, combined single-particle cryo-electron microscopy (cryo-EM) studies of dynamic structures of LHCII at atomic resolution with multistate density functional theory (MSDFT) calculations of energy transfer between photosynthetic pigment molecules to identify the photosynthetic pigment quantum switch for intermolecular energy transfer.

The paper, “Cryo-EM Structures of LHCII in Photo-active and Photo-protecting States Reveal Allosteric Regulation of Light-Harvesting and Excess Energy-Dissipation,” was published in Nature Plants.

As part of their work, they reported a series of six cryo-EM structures, including the energy transfer state with LHCII in solution and the energy quenching state with laterally confined LHCII in membrane nanodiscs under both neutral and acidic conditions.


The relationship between fluorescence decay rate, Lut1–Chl612 electronic coupling strength against Lut1–Chl612 separation distance, and plot of Lut1–Chl612 distance versus the crossing angle of TM helices A and B in different LHCII structures. Credit: Institute of Physics

× close


The relationship between fluorescence decay rate, Lut1–Chl612 electronic coupling strength against Lut1–Chl612 separation distance, and plot of Lut1–Chl612 distance versus the crossing angle of TM helices A and B in different LHCII structures. Credit: Institute of Physics

Comparison of these different structures shows that LHCII undergoes a conformational change upon acidification. This change allosterically alters the inter-pigment distance of the fluorescence quenching locus Lutein1 (Lut1)–Chlorophyll612 (Chl612) only when LHCII is confined in membrane nanodiscs, leading to the quenching of excited Chl612 by Lut1.

Thus, LHCII confined with lateral pressure (e.g., aggregated LHCII) is a prerequisite for non-photochemical quenching (NPQ), whereas acid-induced conformational change enhances fluorescence quenching.

Through MSDFT calculations of cryo-EM structures and the known crystal structure in quenched states, together with transient fluorescence experiments, a significant quantum switching mechanism of LHCII has been revealed with Lut1–Chl612 distance as the key factor.


Molecular mechanism of NPQ and acidity-induced changes in some key structural factors drive the LHCII trimer to switch between light-harvesting and energy-quenching states. Credit: Institute of Physics

× close


Molecular mechanism of NPQ and acidity-induced changes in some key structural factors drive the LHCII trimer to switch between light-harvesting and energy-quenching states. Credit: Institute of Physics

This distance regulates the energy transfer quantum channel in response to the lateral pressure on LHCII and the conformational change, that is, a slight change at its critical distance of 5.6 Å would allow reversible switching between light harvesting and excess energy dissipation. This mechanism enables a rapid response to changes in light intensity, ensuring both high efficiency in photosynthesis and balanced photoprotection with LHCII as a quantum switch.

Previously, these two research groups had collaborated on molecular dynamics simulations and ultrafast infrared spectroscopy experiments and had proposed that LHCII is an allosterically regulated molecular machine. Their current experimental cryo-EM structures confirm the previously theoretically predicted structural changes in LHCII.

More information:
Meixia Ruan et al, Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation, Nature Plants (2023). DOI: 10.1038/s41477-023-01500-2

Journal information:
Nature Plants

Previous post How Old the Cast Is Compared to Their Characters
Next post Life inside the ‘hijacked’ Johannesburg building where scores burned alive
سكس نيك فاجر boksage.com مشاهدة سكس نيك
shinkokyu no grimoire hentairips.com all the way through hentai
xxxxanimal freshxxxtube.mobi virus free porn site
xnxx with dog onlyindianpornx.com sexy baliye
小野瀬ミウ javdatabase.net 秘本 蜜のあふれ 或る貴婦人のめざめ 松下紗栄子
سكس كلاب مع نساء hailser.com عايز سكس
hidden cam sex vedios aloha-porn.com mom and son viedo hd
hetai website real-hentai.org elizabeth joestar hentai
nayanthara x videos pornscan.mobi pron indian
kowalsky pages.com tastymovie.mobi hindi sx story
hairy nude indian popcornporn.net free sex
تحميل افلام سكس مترجم عربى pornostreifen.com سكس مقاطع
كس اخته pornozonk.com نسوان جميلة
xxnx free porn orgypornvids.com nakad
medaka kurokami hentai hentaipod.net tira hentai