Plasma proteomic profiles predict future dementia in healthy adults

  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swaddiwudhipong, N. et al. Pre-diagnostic cognitive and functional impairment in multiple sporadic neurodegenerative diseases. Alzheimers Dement. 19, 1752–1763 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Shah, H. et al. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol. 15, 1285–1294 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Teunissen, C. E. et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 21, 66–77 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zetterberg, H. Biofluid-based biomarkers for Alzheimer’s disease-related pathologies: an update and synthesis of the literature. Alzheimers Dement. 18, 1687–1693 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hansson, O. et al. The Alzheimer’s Association appropriate use recommendations for blood biomarkers in Alzheimer’s disease. Alzheimers Dement. 18, 2669–2686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakamura, A. et al. High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature 554, 249–254 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Palmqvist, S. et al. Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures. Nat. Med. 27, 1034–1042 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verberk, I. M. W. et al. Serum markers glial fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longev. 2, e87–e95 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kim, K. et al. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma. Nat. Commun. 11, 119 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashton, N. J. et al. Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer’s trial selection and disease monitoring. Nat. Med. 28, 2555–2562 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karikari, T. K. et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 19, 422–433 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mattsson-Carlgren, N. et al. Prediction of longitudinal cognitive decline in preclinical Alzheimer disease using plasma biomarkers. JAMA Neurol. 80, 360–369 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karikari, T. K. et al. Blood phospho-tau in Alzheimer disease: analysis, interpretation, and clinical utility. Nat. Rev. Neurol. 18, 400–418 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanaka, T. et al. Plasma proteomic signatures predict dementia and cognitive impairment. Alzheimers Dement. (N Y) 6, e12018 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hye, A. et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129, 3042–3050 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, B. et al. Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol. Neurodegener. 16, 55 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, K. A. et al. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat. Aging 1, 473–489 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubois, B. et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 20, 484–496 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Wolf, F. et al. Plasma tau, neurofilament light chain and amyloid-β levels and risk of dementia; a population-based cohort study. Brain 143, 1220–1232 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, W. et al. Elevated levels of serum neurofilament light chain associated with cognitive impairment in vascular dementia. Dis. Markers 2020, 6612871 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benedet, A. L. et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 78, 1471–1483 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Cicognola, C. et al. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. Ther. 13, 68 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGrath, E. R. et al. Growth differentiation factor 15 and NT-proBNP as blood-based markers of vascular brain injury and dementia. J. Am. Heart Assoc. 9, e014659 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whelan, C. D. et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol. Commun. 7, 169 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dulewicz, M., Kulczyńska-Przybik, A., Słowik, A., Borawska, R. & Mroczko, B. Neurogranin and neuronal pentraxin receptor as synaptic dysfunction biomarkers in Alzheimer’s disease. J. Clin. Med. 10, 4575 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor, A. et al. Plasma GFAP in presymptomatic and symptomatic familial Alzheimer’s disease: a longitudinal cohort study. J. Neurol. Neurosurg. Psychiatry 94, 90–92 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Kuhle, J. et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 86, 273–279 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Fuchs, T. et al. Macrophage inhibitory cytokine-1 is associated with cognitive impairment and predicts cognitive decline – the Sydney Memory and Aging Study. Aging Cell 12, 882–889 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babu, H. et al. Systemic inflammation and the increased risk of inflamm-aging and age-associated diseases in people living with HIV on long term suppressive antiretroviral therapy. Front. Immunol. 10, 1965 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castellano, J. M. et al. Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc. Natl Acad. Sci. USA 109, 15502–15507 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. Dl-3-n-butylphthalide reduces cognitive impairment induced by chronic cerebral hypoperfusion through GDNF/GFRα1/Ret signaling preventing hippocampal neuron apoptosis. Front. Cell Neurosci. 13, 351 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oeckl, P. et al. Serum GFAP differentiates Alzheimer’s disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J. Neurol. Neurosurg. Psychiatry 93, 659–667 (2022).

    Article 

    Google Scholar 

  • Kivisäkk, P. et al. Plasma biomarkers for diagnosis of Alzheimer’s disease and prediction of cognitive decline in individuals with mild cognitive impairment. Front. Neurol. 14, 1069411 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beyer, L. et al. Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimers Dement. 19, 1020–1028 (2023).

    Article 
    CAS 

    Google Scholar 

  • Stocker, H. et al. Association of plasma biomarkers, p-tau181, glial fibrillary acidic protein, and neurofilament light, with intermediate and long-term clinical Alzheimer’s disease risk: results from a prospective cohort followed over 17 years. Alzheimers Dement. 19, 25–35 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oeckl, P. et al. Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. J. Alzheimers Dis. 67, 481–488 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heller, C. et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 91, 263–270 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Verberk, I. M. W. et al. Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology. Alzheimers Res. Ther. 12, 118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajan, K. B. et al. Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann. Neurol. 88, 1065–1076 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katisko, K. et al. GFAP as a biomarker in frontotemporal dementia and primary psychiatric disorders: diagnostic and prognostic performance. J. Neurol. Neurosurg. Psychiatry 92, 1305–1312 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Katsanos, A. H. et al. Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke 48, 2586–2588 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Undén, J. et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J. Neurol. 256, 72–77 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Elahi, F. M. et al. Plasma biomarkers of astrocytic and neuronal dysfunction in early- and late-onset Alzheimer’s disease. Alzheimers Dement. 16, 681–695 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shir, D. et al. Association of plasma glial fibrillary acidic protein (GFAP) with neuroimaging of Alzheimer’s disease and vascular pathology. Alzheimers Dement. (Amst.) 14, e12291 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Vermeer, S. E. et al. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat. Rev. Neurol. 11, 157–165 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Cullen, N. C. et al. Plasma biomarkers of Alzheimer’s disease improve prediction of cognitive decline in cognitively unimpaired elderly populations. Nat. Commun. 12, 3555 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fyfe, I. Neurofilament light chain – new potential for prediction and prognosis. Nat. Rev. Neurol. 15, 557 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Pilotto, A. et al. Plasma neurofilament light chain predicts cognitive progression in prodromal and clinical dementia with Lewy bodies. J. Alzheimers Dis. 82, 913–919 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gisslén, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Chai, Y. L. et al. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore) 95, e4566 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, K. A. et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci. Transl. Med. 15, eadf5681 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schindowski, K. et al. Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia. Cell Tissue Res. 343, 399–409 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andersson, C. et al. Associations of circulating growth differentiation factor-15 and ST2 concentrations with subclinical vascular brain injury and incident stroke. Stroke 46, 2568–2575 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Dijk, E. J. et al. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke 39, 2712–2719 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Conte, M. et al. GDF15, an emerging key player in human aging. Ageing Res. Rev. 75, 101569 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, D. et al. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat. Rev. Endocrinol. 17, 592–607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marks, J. D. et al. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res. Ther. 13, 199 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cousins, K. A. Q. et al. ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimers Dement. 17, 822–830 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Illán-Gala, I. et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer disease. Neurology 96, e671–e683 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, Y. et al. Large-scale plasma proteomic profiling identifies a high-performance biomarker panel for Alzheimer’s disease screening and staging. Alzheimers Dement. 18, 88–102 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prince, M. et al. World Alzheimer Report 2015—The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. Alzheimer’s Disease International www.alzint.org/resource/world-alzheimer-report-2015/ (2015).

  • You, J. et al. Development of a novel dementia risk prediction model in the general population: a large, longitudinal, population-based machine-learning study. EClinicalMedicine 53, 101665 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wik, L. et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell Proteomics 20, 100168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elliott, P., Peakman, T. C. & UK Biobank The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).

    Article 
    PubMed 

    Google Scholar 

  • You, J. et al. Plasma proteomic profiles predict individual future health risk. Nat. Commun. 14, 7817 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tynkkynen, J. et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: a prospective study in eight cohorts. Alzheimers Dement. 14, 723–733 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guolin K. et al. LightGBM: a highly efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (eds von Luxburg, U., Guyon, I., Bengio, S., Wallach, H. & Fergus, R.) 3149–3157 (Curran Associates Inc., 2017).

  • DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, F. et al. Lipids, apolipoproteins, and the risk of Parkinson disease. Circ. Res. 125, 643–652 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Previous post Hawkeyes tumble in ESPN’s Power Rankings
    Next post Deadpool 3 Trailer Offers A Peek At Wolverine And The TVA