Evolution of phenotypic disparity in the plant kingdom

  • Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).

    Article 

    Google Scholar 

  • Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niklas, K. J. Morphological evolution through complex domains of fitness. Proc. Natl Acad. Sci. USA 91, 6772–6779 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niklas, K. J. Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci. 32, 47–66 (2004).

    Article 
    CAS 

    Google Scholar 

  • Chartier, M. et al. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales.Proc. R Soc. B 284, 20170066 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chartier, M. et al. Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales. New Phytol. 230, 821–831 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jardine, P. E., Palazzesi, L., Telleria, M. C. & Barreda, V. D. Why does pollen morphology vary? Evolutionary dynamics and morphospace occupation in the largest angiosperm order (Asterales).New Phytol. 234, 1075–1087 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Leslie, A. B., Simpson, C. & Mander, L. Reproductive innovations and pulsed rise in plant complexity. Science 373, 1368–1372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, Y., Schneider, H., Li, D. Z. & Wang, H. Evolutionary constraints on disparity of ericaceous pollen grains. Ann. Bot. 123, 805–813 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyce, C. K. Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology 31, 117–140 (2005).

    Article 

    Google Scholar 

  • Xue, J. et al. Stepwise evolution of Paleozoic tracheophytes from South China: Contrasting leaf disparity and taxic diversity. Earth Sci. Rev. 148, 77–93 (2015).

    Article 

    Google Scholar 

  • Wilson, J. P. & Knoll, A. H. A physiologically explicit morphospace for tracheid-based water transport in modern and extinct seed plants. Paleobiology 36, 335–355 (2010).

    Article 

    Google Scholar 

  • Oyston, J. W., Hughes, M., Gerber, S. & Wills, M. A. Why should we investigate the morphological disparity of plant clades? Ann. Bot. 117, 859–879 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Clark, J. W. & Donoghue, P. C. J. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 23, 933–945 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walden, N. et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 11, 3795 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garbary, D. J., Renzaglia, K. S. & Duckett, J. G. The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Syst. Evol. 188, 237–269 (1993).

    Article 

    Google Scholar 

  • Renzaglia, K. S. & Garbary, D. J. Motile gametes of land plants: diversity, development, and evolution. Crit. Rev. Plant Sci. 20, 107–213 (2001).

    Article 

    Google Scholar 

  • Schneider, H., Smith, A. R. & Pryer, K. M. Is morphology really at odds with molecules in estimating fern phylogeny? Syst. Bot. 34, 455–475 (2009).

    Article 

    Google Scholar 

  • Doyle, J. A. & Endress, P. K. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. J. Syst. Evol. 48, 1–35 (2010).

    Article 

    Google Scholar 

  • Mishler, B. D. & Churchill, S. P. Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1, 305–328 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Press, 1997).

  • Hilton, J. & Bateman, R. M. Pteridosperms are the backbone of seed-plant phylogeny. J. Torrey Bot. Soc. 133, 119–168 (2006).

    Article 

    Google Scholar 

  • Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, R210–R213 (2018).

    Article 

    Google Scholar 

  • Floyd, S. K. & Bowman, J. L. The ancestral developmental tool kit of land plants. Int. J. Plant Sci. 168, 1–35 (2007).

    Article 
    CAS 

    Google Scholar 

  • Villarreal, J. C., Cargill, D. C., Hagborg, A., Soderstrom, L. & Renzaglia, K. S. A synthesis of hornwort diversity: patterns, causes and future work. Phytotaxa 9, 150–166 (2010).

    Article 

    Google Scholar 

  • Doyle, J. A. in Annual Plant Reviews Vol. 45 (eds B. A. Ambrose & M. D. Purugganan) Ch. 1, 1–50 (Blackwell, 2013).

  • Brandon, R. & McShea, D. W. The Missing Two-thirds of Evolutionary Theory (Cambridge Univ. Press, 2020).

  • McShea, D. W. Metazoan complexity and evolution: is there a trend? Evolution 50, 477–492 (1996).

    PubMed 

    Google Scholar 

  • McShea, D. W. & Brandon, R. N. Biology’s First Law. The Tendency for Diversity and Complexity to Increase in Evolutionary Systems (Univ. Chicago Press, 2010).

  • Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304.e215 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, B. J. et al. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat. Ecol. Evol. 6, 1634–1643 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rensing, S. A. Gene duplication as a driver of plant morphogenetic evolution. Curr. Opin. Plant Biol. 17, 43–48 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donoghue, M. J., Doyle, J., Gauthier, J., Kluge, A. & Rowe, T. The importance of fossils in phylogeny reconstruction. Annu. Rev. Ecol. Syst. 20, 431–460 (1989).

    Article 

    Google Scholar 

  • Edwards, D., Morris, J. L., Axe, L. & Duckett, J. G. Picking up the pieces: new charcoalified plant mesofossils (eophytes) from a Lower Devonian Lagerstӓtte in the Welsh Borderland, UK.Rev. Palaeobot. Palynol. 297, 104567 (2022).

    Article 

    Google Scholar 

  • Deline, B. The effects of rarity and abundance distributions on measurements of local morphological disparity. Paleobiology 35, 175–189 (2009).

    Article 

    Google Scholar 

  • Deline, B. et al. Evolution of metazoan morphological disparity. Proc. Natl Acad. Sci. USA 115, E8909–E8918 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nordén, K. K., Stubbs, T. L., Prieto-Márquez, A. & Benton, M. J. Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction. Paleobiology 44, 620–637 (2018).

    Article 

    Google Scholar 

  • Cleal, C. J. & Cascales-Miñana, B. Composition and dynamics of the great Phanerozoic Evolutionary Floras. Lethaia 47, 469–484 (2014).

    Article 

    Google Scholar 

  • Bowles, A. M. C., Bechtold, U. & Paps, J. The origin of land plants is rooted in two bursts of genomic novelty. Curr. Biol. 30, 530–536 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valentine, J. W., Tiffney, B. H. & Sepkoski, J. J. Jr. Evolutionary dynamics of plants and animals: a comparative approach. Palaios 6, 81–88 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donoghue, P. C. J., Harrison, C. J., Paps, J. & Schneider, H. The evolutionary emergence of land plants. Curr. Biol. 31, R1281–R1298 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, T. J. & Donoghue, P. C. J. Evolution of fungal phenotypic disparity. Nat. Ecol. Evol. 6, 1489–1500 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Erwin, D. H. Evolutionary uniformitarianism. Dev. Biol. 357, 27–34 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanschen, E. R. et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat. Commun. 7, 11370 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vivancos, J. et al. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development. Plant Mol. Biol. 78, 323–336 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erwin, D. H. A conceptual framework of evolutionary novelty and innovation. Biol. Rev. Camb. Philos. Soc. 96, 1–15 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mishler, B. D. et al. Phylogenetic relationships of the ‘green algae’ and ‘bryophytes’. Ann. Mo. Bot. Gard. 81, 451–483 (1994).

    Article 

    Google Scholar 

  • Huelsenbeck, J. P., Nielsen, R., Bollback, J. P. & Schultz, T. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–874 (1971).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.0-7 (2013).

  • Foote, M. Contributions of individual taxa to overall morphological disparity. Paleobiology 19, 403–419 (1993).

    Article 

    Google Scholar 

  • Guillerme, T. & Poisot, T. dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018).

    Article 

    Google Scholar 

  • Guillerme, T. & Cooper, N. Time for a rethink: time sub-sampling methods in disparity-through-time analyses.Palaeontology 61, 481–493 (2018).

    Article 

    Google Scholar 

  • Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Previous post Everything You Need to Know About the iPhone 15 Camera Specifications
    Next post Apple, Google, Nvidia, others say they’re open to buying Arm shares